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STRESS WAVES IN A ROD SUBJECTED TO A MOVING LOAD

UDC 539.3R. G. Yakupov

The wave processes in a semi-infinite rod located in an elastic medium and subjected to a point load
moving at a constant velocity are considered. The system of two differential equations of motion of
Timoshenko beam theory is solved using the Laplace transform in time. The integrals obtained are
determined numerically. Variation of the bending moment on the longitudinal coordinate behind the
elastic-wave front and the region of action of the point force at various times is shown. The results
of the solution are influence functions.
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This paper analyzes longitudinal and transverse waves that arise in a semi-infinite rod located in an elastic
medium and subjected to a point force moving at a constant velocity. Recently, the problem of self-propagation of
stress and strain waves in engineering facilities of large extension has increased in importance.

The dynamics of engineering systems subjected to moving loads has been studied in many papers, which are
reviewed in [1–3]. The conventional equations of motion of bending theory give approximate solutions of the wave
problem for large times and correspond to simultaneous perturbation propagation along the rod [3]. In the case
considered, the equation of motion is written with allowance for shear strains and the inertia of rotation [4]:

∂Q

∂x
+ αW = p(x, t) − ρF

∂2W

∂t2
,

∂M

∂x
− Q = ρI

∂2θ

∂t2
;

(1)

Q = k′GF
(
θ − ∂W

∂x

)
, M = EJy

∂θ

∂x
. (2)

Here Q and M are the shear force and the bending moment, respectively, W is the deflection, p(x, t) is the external
force, ρ, E, and G are the density and elastic and shear moduli of the rod material, respectively, I is the polar
moment of inertia of an element, F and Jy are the cross-sectional area and the axial moment of inertia, respectively,
x is the longitudinal coordinate reckoned from the mounting device, t is time, k′ is the cross-section shape coefficient
(k′ = 1.2 for a rectangular cross section and k′ = 1.1 for a circular cross section), and α is the coefficient of the base
defined by the formula [5]

α = 0.12E∗(b/l0)1/2/(1 − μ2
∗);

b is the cross-sectional width of the rod and l0 is unit length. In the case of a rod of circular cross section b = D

(D is the rod diameter). The total angle of rotation is equal to

∂W

∂x
= θ + β∗ (3)

(θ and β∗ are the angles of rotation due to the bending moment and shear force, respectively). Substitution of (2)
and (3) into (1) yields the following equations in displacements:
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k′GF
( ∂θ

∂x
− ∂2W

∂x2

)
+ ρF

∂2W

∂t2
+ αW = p(x, t), EJy

∂2θ

∂x2
− k′GF

(
θ − ∂W

∂x

)
− ρI

∂2θ

∂t2
= 0. (4)

Using the dimensionless quantities

ξ =
x

r
, τ =

c1t

r
, w =

W

r
, m =

Mr

EJy

and introducing the notation

c2
1 =

E

ρ
, c2

2 =
k′G
ρ

, r2 =
Jy

F
, γ =

c2
1

c2
2

,

we divide Eq. (4) by k′GF . As a result, we obtain

∂2w

∂ξ2
− ∂θ

∂ξ
− γ

∂2w

∂τ2
− ζw = −rp(ξ, τ)

ρFc2
2

,

∂w

∂ξ
− θ + γ

(∂2θ

∂ξ2
− ∂2θ

∂τ2

)
= 0.

(5)

Here ζ = r2α/(ρFc2
2) and c1 and c2 are the propagation velocities of the bending and shear waves. It is assumed

that the external force is a point one and moves at a velocity V . The pressure function is written as

p(ξ, τ) = p0δ(x − V t) = p0δ[r(ξ − τ/β)].

Here β = c1/V and δ is the Dirac delta function defined by the condition
b∫

a

f(ξ)δ(ξ − X) dξ = f(X), a � X � b.

For the rod at rest, where the force p0 has not yet begin to move, the initial conditions are given by

τ = 0: w(ξ, 0) = θ(ξ, 0) = 0,
∂w

∂τ
=

∂θ

∂τ
= 0.

We apply the Laplace transformation in time to system (5):

d2w̄

dξ2
− (γs2 + ζ)w̄ − dθ̄

dξ
= − p0r

ρFc2
2

∞∫
0

e−sτ δ[r(ξ − τ/β)] dτ,
dw̄

dξ
+ γ

d2θ̄

dξ2
− (γs2 + 1)θ̄ = 0 (6)

(w̄ and θ̄ are the images of the functions w and θ). On the right of the first formula in (6), we make the change of
variable by the formula

z = r(ξ − r/β), (7)

whence we obtain

τ = β(ξ − z/r), dτ = −(β/r) dz. (8)

We substitute (7) and (8) into the integrand on the right of the first equation in (6) and perform integration:
∞∫
0

e−sτ δ
[
r
(
ξ − τ

β

)]
dτ = −β

r
e−βsτ eβsz

∣∣∣
z=0

= −β

r
e−βsξ .

As a result, system (6) becomes

d2w̄

dξ2
− (γs2 + ζ)w̄ − dθ̄

dξ
= kγ e−βsξ,

dw̄

dξ
+ γ

d2θ̄

dξ2
− (γs2 + 1)θ̄ = 0,

(9)

where k = p0/(ρFV c1).
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Eliminating θ̄ from (9), we obtain

d4w̄

dξ4
− [(γ + 1)s2 + ζ]

d2w̄

dξ2
+

[
γs4 + (ζ + 1)s2 +

ζ

γ

]
w̄ = kf2 e−βsξ . (10)

Here f2 = (β2 − 1)γs2 − 1. The solution of system (9) has the form

w̄ = A1 e−λ1ξ +A2 e−λ2ξ +D1 e−βsξ,

θ̄ = (λ2
1 − γs2 − ζ)A1 e−λ1ξ /(−λ1) + (λ2

2 − γs2 − ζ)A2 e−λ2ξ /(−λ2) + D2 e−βsξ,
(11)

where A1 and A2 are the constants of integration of Eq. (10), D1 = kf2/(b1f1), D2 = kβs/(b1f1), f1 = (s2 −
a2
3)(s

2 − a2
4), a3,4 = [b2 ± (b2

2 − 4b1ζ/γ)1/2]/(2b1), b1 = (β2 − γ)(β2 − 1), b2 = (β2 − 1)ζ − 1, and λ1,2 are two (of the
four) roots of the characteristic equation

λ4 − [(γ + 1)s2 + ζ]λ2 + [γs4 + (ζ + 1)s2 + ζ/γ] = 0,

that satisfy the damping condition for w̄ and θ̄ at infinity:

λ1,2 = (1/
√

2 )
(
[(γ + 1)s2 + ζ] ± {(γ − 1)2s4 + 2[(γ − 1)ζ − 2]s2 + ζ(ζ − 4/γ)}1/2

)1/2

. (12)

Equation (12) is represented as

λ2
1,2 = [(γ + 1)s2 + ζ]/2 ± f/a, (13)

where f = [(s2−a2
1)(s2−a2

2)]1/2, a2
1,2 = (a/2){(a−ζ)±a[1−(γ−1)ζ/γ]1/2}, and a = 2/(γ−1). The function λ2

1(s) is
analytic in the integration plane and is not equal to zero. Following [6], we multiply and divide λ2

2 by λ2
1. After

transformations, we have

λ2
2λ

2
1/λ2

1 = γ(s2 + ζ/γ)(s2 + 1/γ)/λ2
1. (14)

From (13) and (14), it follows that the branch points of λ1 are the points s = ±a1, s = ±ia2, and the branch points
of λ2 are the points s = ±a1, s = ±ia2 and s = ±i(ζ/γ)1/2, s = ±i(1/γ)1/2.

Let us consider two types of mounting device in the initial cross section: hinged fastening and clamping. For
hinged fastening, the transformed boundary conditions are written as

ξ = 0: w̄(0, τ) =
∂θ̄

∂ξ
= 0.

The integration constants are equal to

A1 =
ka

2f

[
γ + (λ2

2 − β2s2)
f2

b1f1

]
, A2 = −ka

2f

[
γ + (λ2

1 − β2s2)
f2

b1f1

]
.

In the case of clamping, we have zero rotation and shear angles

ξ = 0: θ̄ = 0,
∂w̄

∂ξ
− θ̄ = 0,

and the integration constants are equal to

A1 =
akλ1λ

2
2

2βfs

[ γ

γs2 + β
+

f2

b1f1

]
, A2 = −akλ2λ

2
1

2βfs

[ γ

γs2 + β
+

f2

b1f1

]
.

The image of the bending moment is defined by the formula

m̄ = A∗
1 e−λ1ξ +A∗

2 e−λ2ξ −D∗
3 e−βsξ, (15)

where A∗
1 = (λ2

1 − γs2 − ζ)A1, A∗
2 = (λ2

2 − γs2 − ζ)A2, and D∗
3 = kβ2s2/(b1f1).

The inversion formula is written as

1
2πi

c+i∞∫
c−i∞

F (s) eτs ds =

{
f(τ), τ > 0,

0, τ < 0.

Let us determine the original of the bending moment in the case of hinged fastening for V < c2. According
to (15), we write
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m(ξ, τ) = (I1 + I2 + I3)/(2πi). (16)

Here

I1 =

c+i∞∫
c−i∞

A∗
2 e(τ−λ2ξ/s)s ds, I2 =

c+i∞∫
c−i∞

A∗
2 e(τ−λ1ξ/s)s ds, I3 =

c+i∞∫
c−i∞

D∗
3 e(τ−βξ)s ds.

The integrands in (16) have the following property:

s → ∞: A∗
1(s) → 0, A∗

2(s) → 0, D∗
3(s) → 0.

In this case, λ1 and λ2 tend to constant values:

lim
s→∞

λ2

s
= 1, lim

s→∞
λ1

s
=

√
γ.

At any specified time τ , the integrals I1 and I2 are not equal to zero for ξ < τ and ξ < τ/
√

γ, respectively,
and are equal to zero for ξ > τ and ξ > τ/

√
γ, respectively [6]. Similarly, I3 �= 0 in the case ξ < τ/β and I3 = 0 in

the case ξ > τ/β. The region of perturbation propagation is divided by the bending- and shear-wave fronts and the
point force p0 into three parts. The coordinates of the wave fronts are ξ1 = τ and ξ2 = τ/

√
γ, and the coordinate

of the point force is ξ3 = τ/β. The entire region 0 < ξ < ξ1 is encompassed by the bending wave. The wave
parameters are determined using the integral I1. In the interval 0 < ξ < ξ2, bending and shear waves are present,
and the shear-wave parameters are defined by the integral I2. In the region 0 < ξ < ξ3, in addition to bending and
shear strains, there are strains due to the action of the point force, which are defined by the integral I3. In the
interval 0 < ξ < ξ3, all types of strain are present.

For convenience in converting to real integrals, the expression for I1 and I2 are written as the sum
1

2πi
I1 = I ′1 + I ′′1 ,

1
2πi

I2 = I ′2 + I ′′2 ,

where

I ′1 = − 1
2πi

c+i∞∫
c−i∞

kaγ

2f
(λ2

2 − γs2 − ζ) eτs−λ2ξ ds, τ > ξ,

I ′′1 = − 1
2πi

c+i∞∫
c−i∞

ka

2b1

[(β2 − 1)γs2 − 1](λ2
1 − β2s2)(λ2

2 − γs2 − ζ) eτs−λ2ξ

ff1
ds, ξ < τ <

√
γ ξ,

I ′2 =
1

2πi

c+i∞∫
c−i∞

kaγ

2f
(λ2

1 − γs2 − ζ) eτs−λ1ξ ds,
√

γ ξ < τ < βξ,

I ′′2 =
1

2πi

c+i∞∫
c−i∞

ka

2b1

[(β2 − 1)γs2 − 1](λ2
2 − β2s2)(λ2

1 − γs2 − ζ) eτs−λ1ξ

ff1
ds,

√
γ ξ < τ < βξ,

1
2πi

I3 =
1

2πi

c+i∞∫
c−i∞

kβ2s2

b1f1
e(τ−βξ)s ds, τ > βξ.

In the integral I1, the integrands have the branch points s = ±a1, ±ia2, ±ia5, and ±ia6; in the integral I2, the
branch points are s = ±a1 and ±ia2. In addition to the indicated branch points, the functions in I ′′1 and I ′′2 have
simple poles at the points ±ia3 and ±ia4.

The contour integrals are converted to real integrals. The contours for the integration of I1 and I2 are
presented in Fig. 1. The complex expressions in the integrands are calculated subject to the constraints on their
arguments depending on the integration path and are given in Table 1. The calculations were made using the
formula
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Fig. 1. Contours of integration of I1 (a) and I2 (b) by formula (16): 1–9 and I–IX are
the opposite faces of the integration path.

I =
∑

res (s) −
∑ ∫

γi

,

where γi are the integration paths on the cut faces and a circular arc of infinitesimal radius. As the circle radius
tends to zero, the integrals vanish. The calculations yield

I ′1 =
kaγ

2π

a1∫
0

(e−(τx+η1ξ)[(R1 − γx2 − ζ) cos (η2ξ) + R2 sin (η2ξ)]√
(a2

1 − x2)(a2
2 + x2)

+
eτx−η2ξ[(R1 − γx2 − ζ) cos (η1ξ) + R2 sin (η1ξ)]√

(a2
1 − x2)(a2

2 + x2)

)
dx,

I ′′1 = res (s)1 − ka

2πb1

a1∫
0

(e−(τx+η1ξ)[(β2 − 1)γx2 − 1][T1 cos (η2ξ) − T2 sin (η2ξ)]√
(a2

1 − x2)(a2
2 + x2) (a2

3 + x2)(a2
4 + x2)

+
eτx−η2ξ)[(β2 − 1)γx2 − 1][T1 cos (η1ξ) − T2 sin (η1ξ)]√

(a2
1 − x2)(a2

2 + x2) (a2
3 + x2)(a2

4 + x2)

)
dx,

res (s)1 =
ka

2b1

( [(β2 − 1)γa2
3 + 1](R̄1 − R̄2 + β2a2

3)(R̄1 + R̄2 + γa2
3 − ζ) e−η6ξ sin (a3τ)

a3(a2
3 − a2

4)
√

(a2
3 + a2

1)(a
2
3 − a2

2)

+
[(β2 − 1)γa2

4 + 1](R̄1 − R̄2 + β2a2
4)(R̄1 + R̄2 + γa2

4 − ζ) e−η6ξ sin (a4τ)
a4(a2

4 − a2
3)

√
(a2

4 + a2
1)(a2

4 − a2
2)

)
,

R1 = [(γ + 1)x2 + ζ]/2, R2 = (γ + 1)[|a2
2 − x2|(a2

2 + x2)]1/2/2, R = (R2
1 + R2

2)
1/2,

T1 = (R1 − β2x2)(R1 − γx2 − ζ) + R2
2, T2 = R2[(β2 − γ)x2 − ζ],
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TABLE 1
Complex Quantities in the Expressions of the Integrals I1 and I2

Integration
path

s s2 s + a1 s − a1

√
s + a1√
s − a1

s + ia2

1

I
|x| e±iπ x2 (x + a1) e±iπ (x − a1) e±iπ −

�
x2 − a2

1

�
a2
2 + x2 ei(π−α)

2

II
|x| e±iπ x2 (a1 − x) e±iπ (a1 − x) e±iπ ±i

�
a2
1 − x2

�
a2
2 + x2 ei(π−α)

4

IV
x x2 (a1 − x) e±iπ (a1 − x) e±iπ ±i

�
a2
1 − x2

�
a2
2 + x2 eiα

3

III
iy −y2

�
a2
1 + y2

eiα

ei(π−α)

�
a2
1 + y2

ei(π−α)

eiα
i
�

a2
1 + y2 (a2 + y) eiπ/2

5

V
−iy −y2

�
a2
1 + y2 e−iα

�
a2
1 + y2 e−i(π−α) −i

�
a2
1 + y2 (a2 + y) e−iπ/2

6, VI

7, VII
±iy −y2

�
a2
1 + y2

eiα

e−iα

�
a2
1 + y2 e±i(π−α) ±i

�
a2
1 + y2 (y ± a2) e±iπ/2

Note. Arabic and Roman numerals correspond to segments of the integration contour in Fig. 1.

R̄1 = [ζ − (γ + 1)y2]/2, R̄2 = (γ − 1)[(a2
1 + y2)|a2

2 − y2|]1/2/2, R̄ = (R̄2
1 + R̄2

2)
1/2,

η1,2 = [(R ∓ R1)/2]1/2, η3,4 = [(R̄ ± R̄1)/2]1/2, η5,6 = |R̄1 ∓ R̄2|1/2.

In the first term of the expression for res (s)1, the quantities R̄1, R̄2, and η6 are determined for y = a3, and in the
second term, they are determined for y = a4.

For I2, the following relations hold:

I ′2 = −I ′1, I ′′2 = −(I ′2 − res (s)1) + res (s)2,

res (s)2 =
ka

2b1

(T3[(β2 − 1)γa2
3 + 1] sin (a3τ) cos (η5ξ)

a3(a2
4 − a2

3)
√

(a2
3 + a2

1)(a
2
3 − a2

2)

+
T3[(β2 − 1)γa2

4 + 1] sin (a4τ) cos (η5ξ)
a4(a2

3 − a2
4)

√
(a2

4 + a2
1)(a

2
4 − a2

2)

)
,

T3 = (R̄1 + R̄2 + β2y2)(R̄1 − R̄2 + γy2 − ζ).

In first term of the expression for res (s)2, the quantities R̄1, R̄2, η5, and T3 are determined for y = a3, in the second
term, they are determined for y = a4.

The integral I3 has simple poles at the points ±ia3, ±ia4 and is equal to the sum of residues at the poles:

1
2πi

I3 = res (s)3, τ > βξ.

Here

res (s)3 =
k

b1(a2
4 − a2

3)
[β2a4 sin ((τ − βξ)a4) − β2a3 sin ((τ − βξ)a3)].
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for Different Integration Paths

s − ia2

√
s + ia2 ×√
s − ia2

f λ2
1,2 λ1,2

Interval
of variation x, y

�
a2
2 + x2 e−i(π−α)

�
a2
2 + x2

−
�

x2 − a2
1 ×�

x2 + a2
2

R1 ∓ R2
√

R1 ∓ R2 x < −a1

�
a2
2 + x2 e−i(π−α)

�
a2
2 + x2

±i
�

a2
1 − x2 ×�

a2
2 + x2

R1 ± R2

R1 ∓ R2

η1 ± iη2

η1 ∓ iη2
−a1 < x < 0

�
a2
2 + x2 e−iα

�
a2
2 + x2

±i
�

a2
1 − x2 ×�

a2
2 + x2

R1 ± R2

R1 ∓ R2

η2 ± iη1

η2 ∓ iη1
0 � x � a1

(a2 − y) e−iπ/2
�

a2
2 − y2

i
�

a2
1 + y2 ×�
a2
2 − y2

R̄1 ± iR̄2 η3 ± iη4 0 � y � a2

(a2 − y) eiπ/2
�

a2
2 − y2

−i
�

a2
1 + y2 ×�

a2
2 − y2

R̄1 ∓ iR̄2 η3 ∓ iη4 −a2 � y � 0

(y ∓ a2) e±iπ/2 ±i
�

y2 − a2
2

−
�

y2 + a2
1 ×�

y2 − a2
2

R̄1 ∓ R̄2
λ1 = iη5

λ2 = η6

y < −a2

The integrals over the segments of the integration contour denoted by figures 1 and I and over the entire cut faces
along the imaginary axis are mutually cancelled.

For the particular case V = c2, in (11) it is necessary to set

D1 = k[(γ − 1)γs2 − 1]/[b3(s2 + a2
7)], D2 = k

√
γ s/[b3(s2 + a2

7)],

where b3 = 1 − (γ − 1)ξ and a2
7 = ζ/(b3γ). In the case of hinged fastening, the bending moment is expressed as

m(ξ, τ) = (I1 + I2 + I3)/(2πi), τ >
√

γξ.

Here

I1 = −ka

2

c+i∞∫
c−i∞

[γ

f
+ (λ2

1 − γs2)
F1

F2

]
F3 eτs−λ2ξ ds, I2 =

ka

2

c+i∞∫
c−i∞

[γF5

f
+ (λ2

2 − γs2)
F1F4

F2

]
eτs−λ1ξ ds,

F1 = (γ − 1)γs2 − 1, F2 = fb3(s2 + a2
7), F3 = λ2

2 − γs2 − ζ, F4 = λ2
1 − γs2 − ζ, F5 = λ2

1 − γs2 − 1,

I3 = k

c+i∞∫
c−i∞

γs2

b3(s2 + a2
7)

e(τ−√
γξ)s ds.

Let us consider a numerical example. We assume that p0 = 10 kN/m, the cross section of the beam is
rectangular, b = h = 0.1 m, F = b × h, E = 2 · 105 MPa, ρ = 8 tons/m3, c1 = 5 · 103 m/sec, c2 = 2.84 · 103 m/sec,
V = 2 · 103 m/sec, ζ = 1.35 · 10−2, γ = 3.1, β = 2.5, k = 1.25 · 10−6, a = 0.95, a1 = 0.94, a2 = 0.051, a3 = 0.072,
a4 = 0.225, a5 = 0.066, a6 = 0.568, a7 = 0.067, b1 = 16.6, b2 = −0.929, and b3 = 0.972. The calculations were
made using the formulas

m(ξ, τ) =

⎧⎪⎨
⎪⎩

I ′1 + I ′′1 , ξ2 � ξ � ξ1,

res (s)1 + res (s)2, ξ3 � ξ � ξ2,

res (s)1 + res (s)2 + res (s)3, 0 � ξ � ξ3.
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Fig. 2. Distribution of the bending moment along the rod for V < c2 and τ = 200 (a), 300 (b),
500 (c), 2000 (d), 4000 (e), and 10,000 (f).
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The integrands in the integrals I ′1 and I ′′1 are Oscillating, and at the point x = a1, they have an infinite
discontinuity; therefore, the integration over x was performed using not less than ten steps within the half-wavelength
and setting the upper limit in the form a1(1 − δ), where δ = 10−15. Thus, the principal values of the improper
integrals were determined. The calculations were performed using the trapezoid method.

The calculation results were used to plot curves of m(ξ) at various times (Figs. 2 and 3). For the observer
located at a fixed point of the rod, the curves are oscillograms of the bending moment.

From the above data, it follows that in the perturbation zone, the motion of the rod has a complex vibrational
nature. For V < c2, the vibration frequency is f = 9 kHz, and in the particular case V = c2, we have f = 3.4 kHz.
The bending wave amplitude is two orders of magnitude smaller than the shear wave amplitude and is indiscernible
in the given scale. The strains at the shear wave and behind the load are equal to 0.86 and 1.52 MPa, respectively.

Ahead of the shear wave front, there is a sharp increase in the amplitude of the bending moment m, which
moves at a velocity c2. The jump in the amplitude is due to the assumption of a point load [2]. As the load moves
along the rod, the magnitude of the amplitude jump, the length of the rod segment on which there is the sudden
increase in the amplitude, and, hence, the number of vibrations increase. As a result, each particle of the rod
material is subjected to the bending moment which increases in time.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-97905).
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